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We propose a global optimization procedure, basin paving, which is based on the combination of the
optimization strategies behind basin hopping and energy landscape paving. As an example, we describe its
application in the protein structure prediction by examining two well-studied peptides, where we have found
lower potential energy minima than previously located. We also compare the statistics of the searching trajec-
tories produced by basin paving, basin hopping, and energy landscape paving.
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The design of an effective global optimization algorithm,
which performs a computational search for the global extre-
mum of a multivariable target function, has been a long-
standing problem in computational physics. Although rooted
in more traditional physical problems, the development of
more efficient methods, �where we are able to search through
a vast number of local extrema that sometimes are isolated
from each other in the variable space�, has been continuously
challenged by numerous topics of current interests in theo-
retical and applied physics, such as the prediction of protein
structures �1–3�, ab initio computation of nanosize atomic
clusters �1�, and optimization in transportation systems �4�. A
Monte Carlo based optimization method is conceptually de-
pendent on the introduction of hypothetical thermodynamics
into the treatment, which converts the target function, if not
already the potential energy, into an effective “potential en-
ergy” and allows thermal excitations to enable the search
procedure to move around energy minima. Hence, we are
dealing with the general problem of finding the global energy
minimum in a complex energy landscape, where deep traps
of local energy minima could seriously prevent the reaching
of the global energy minimum within a reasonable computa-
tional time �1,5–10�.

In this paper, we present an improved Monte Carlo global
minimization method, basin paving, based on a combination
of and the improvement over two state-of-the-art algorithms,
basin hopping �5,6�, and energy landscape paving �7�. Exam-
ining a few previously well-studied examples in the predic-
tion of protein structures, we then demonstrate the efficiency
of basin paving in browsing through the low-energy space,
reflected by the discovery of the global energy minima.

We start by briefly reviewing the principle idea behind the
basin hopping �BH� method �1,5,6� for minimization of a
potential-energy function E�r�, where r is a multidimen-
sional vector representing the generalized “atomic coordi-
nates” of the system. The central scheme consists of two
basic steps, iterated many times. Within the first step, a
newly generated atomic configuration �based on small, ran-
dom displacements of existing atomic coordinates� is used as
the initial guess for the input of a typical deterministic mini-
mization algorithm �11�, that precisely locates its nearest lo-
cal energy minimum. In the second step, this local energy
minimum is then used as the current measure of energy for a
typical Monte Carlo �MC� procedure, which evaluates the
acceptability of the generated configuration based on a Bolt-
zmann weight with a prespecified temperature. Essentially,

BH maps the original energy landscape into a reduced energy
landscape of a staircase form, where local energy minima
appear as plateaus in a multidimensional space. This way,
BH eliminates most of the high-energy barriers associated
with the potential-energy maxima in the original energy
function, while pinning down the precise values of energy
minima at the same time. In fact, BH is a canonical �i.e.,
Boltzmann weight based� MC procedure applied on a re-
duced energy landscape transformed by a selected determin-
istic method. Despite the success of BH �1,5,6,12�, when a
system is complicated enough, the reduced energy landscape
could still contain isolated energy traps, separated by high-
energy plateaus; these energy traps hamper the computa-
tional efficiency and can be dealt with by further improving
the second step mentioned above �9,10�.

On the other hand, it has been realized a long time ago
that an energy minimization procedure does not have to
strictly follow a computational trajectory governed by the
principle of detailed balance. The simulated thermodynam-
ics, through the implementation of a statistical weight, in
canonical �5,6� or other generalized ensembles �9,10�, is a
tool but not the final goal, for energy minimization. A di-
rected search towards the desired global energy minimum
can be encouraged by altering the weight function used in
the search or equivalently by deforming the energy landscape
to avoid regions that have already been explored. In an ap-
plication of such an idea, Hansmann and Wille proposed the
energy landscape paving �ELP� method �7�, which utilized
the core idea from a tabu search �13�. Instead of considering
the minimization of E�r�, they considered the minimization
of

E„E�r�,t… � E�r� + f�E,t� , �1�

in which f�E , t� is a paving function that depends on the
history of a particular computational search and changes at
each MC step. In practice, they have suggested using the
accumulated histogram function from all previously visited
energies at the MC step t , H�E , t�, to construct the paving
function �7,14�. As a consequence, the searching process
keeps track of the energies visited so that it can bias against
revisiting those energies again in the immediate future. The
additional paving function helps the simulation escape local
entrapment and surpassing high-energy barriers easier. The
paved energy is then used in the Boltzmann weight,
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w�r,t� = exp�− E„E�r�,t…/kBT� , �2�

for a typical MC search. Note that thermal fluctuations de-
pend on the simulation temperature T, which cannot be ex-
actly zero; hence the procedure yields only the approximate
locations of energy minuma within an error of magnitude
kBT, where kB is the Boltzmann constant.

Our basin paving �BP� method is based on a combination
of BH and ELP, with a critical revision to the latter. After
random initialization of the atomic coordinates, the compu-
tational procedure mainly includes the following steps, re-
peated iteratively. The first step is identical to that in BH.
Based on the existing atomic coordinates computed from the
previous iteration, rmin, we consider an attempted move by
displacing the atoms from rmin to a new configuration r�. The
coordinates r� are then used as the initial guess in a deter-
ministic minimization algorithm to locate the nearest local
minimum at rmin� . Under this step, the mathematical equiva-
lence is the transformation of the original energy landscape

E�r� into Ẽ�r�, which contains only the local minima of E�r�,

Ẽ�r� � min�E�r�� = E�rmin� . �3�

In the next step, we consider an axillary energy function,

Ẽ�r,t� � Ẽ�r� + �H�Ẽ,t� , �4�

where � is an adjustable constant. The acceptability of the
new configuration r� is determined by a comparison between

Ẽ�r�� and Ẽ�r�, where two cases are possible: �a� Ẽ�r��
� Ẽ�r� and �b� Ẽ�r��� Ẽ�r�. For case �a�, we unconditionally
accept the new configuration and return to the first step to
start a new iteration; for case �b�, we consider a transition
probability of

P = exp��Ẽ�r,t� − Ẽ�r�,t��/kBT� �5�

to decide whether the attempted move is acceptable.
This procedure contains the unconditional acceptance of

the new configuration in case �a�, which can be contrasted
with the original ELP where the transition probability of Eq.
�5� is always used for both �a� and �b�. It turns out that this
revision has a profound consequence in the efficiency of the
algorithm as will be discussed below by examples. Concep-
tually, the revision is targeted at overcoming a technical flaw
in ELP—the collection of the histogram function H�E , t� is
actually performed by dividing the energy space into finite-
size bins. Consider an attempted move in ELP which yields a
new, lower-energy minimum that has never been visited be-
fore and happens to fall into the same bin containing other
energies previously visited in earlier steps. Undesirably, the
likelihood of accepting this new energy minimum becomes
small if the histogram function corresponding to that specific
bin is large. Our newly revised, unconditional acceptance for
case �a� overcomes this pitfall. As examples below show, our
revision meets the requirement of extensively searching the
low-energy space and yet not overly exaggerating the sam-
pling of the low-energy region.

A native conformation of a protein is often believed to be
close to its lowest potential-energy configuration �15�. At

present, because of the limitation in computational power,
quantum-mechanical calculations of the potential-energy sur-
face of such systems by solving the many-body Schrödinger
equation is impractical, even for a short peptide. Instead, a
common approach is to represent the potential energy of a
system by a classical force field, in which parameters are
empirically determined to best fit experimental results and ab
initio calculations for small systems. To determine the native
structure, one performs a global optimization to find the glo-
bal minimum of the potential energy as a function of the
coordinates of the representative atoms for a given amino
acid sequence.

To benchmark the effectiveness of BP, we determine the
energy minima of two well-studied peptides, the pentapep-
tide Met-enkephalin, which has only 5 residues �6,7,16–19�,
and the villin headpiece subdomain HP-36, a relatively long
sequence with 36 residues �7,20–22�. In this study, we sepa-
rately used both versions of the empirical confirmational en-
ergy program for peptides �ECEPP� force field, ECEPP/2
and ECEPP/3 �23� �which differ in parametrization�, for the
descriptions of the potential energy between the representa-
tive atoms in the sequences. Typically, ECEPP contains two-
body potentials, representing electrostatic, hydrophobic, and
hydrogen-bonding interactions in the system. The relative
positions of atoms are entirely determined by the torsional
angles between atomic bonds in the system. The bondlengths
and bond angles are fixed at experimental values and out-of-
plane deformation of peptide bonds is not permitted. The
software package SMMP �24� was adopted in this work for
computing the ECEPP potentials.

In our first example, we consider the pentapeptide Met-
enkephalin capped by NH2 for the N terminus and COOH for
the C terminus. Computationally, this peptide is one of the
most frequently studied examples, and the lowest energies
have been reported previously �6,16–18�. In total, we consid-
ered four versions of ECEPP: E /2�, E /2, E /3� and E /3,
where E /2 and E /3 are abbreviates for ECEPP/2 and
ECEPP/3, respectively, and a subscript � is an indication that
the backbone dihedral angles � are constrained to �. The
lowest energies found by our BP search and their corre-
sponding conformations, for these four cases, are shown in
Figs. 1�b�–1�e�. Their dihedral angles can be found in Ref.
�25�. Previously, the local minima with energies not much
higher than the global minimum for case E /2 were sampled
and classified by Freyberg and Braun �16�, using BH with a
variable temperature parameter. The lowest energy was
found to be −12.91 kcal/mol �16� which was reproduced by
our calculation reported in Fig. 1�c�. For cases with � fixed,
Eisenmenger and Hansmann �17� have reported their finding
of the lowest-energy minima of −10.72 kcal/mol �17� and
−10.85 kcal/mol �17� for E /2� and E /3�, respectively, using
a multicanonical method. While our result in Fig. 1�b� con-
firms theirs for E /2�, a new energy minimum E=
−10.90 kcal/mol, which is about 0.05 kcal/mol lower than
that found in Ref. �17�, has been obtained in this work for
E /3�. The significance of our result goes beyond a merely
new lower energy—the value of this energy, no matter how
precisely determined, is an approximation to the true mini-
mum energy since approximations are introduced in propos-
ing the force field. More important than the energy differ-
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ence, there exists a distinctive structural difference between
the configurations, which can be visually inspected between
Figs. 1�a� and 1�d�. Furthermore, by comparing the structures
in Figs. 1�b�–1�e�, we found an overall consistency in the
prediction of the native structure of Met-enkephalin, based
on various versions of ECEPP.

The ability of BP in capturing new energy minimum, ex-
emplified above, lies in its more thorough search in the low-
energy regime. To demonstrate this and to consider the pos-
sible influence of the parameter kBT used in the algorithm
�see Eq. �5��, we plotted the histograms of energies visited
for case E /3� by BP over 2�104 MC steps for Met-
enkephalin at T=5, 50, 500, 1 000, and 2 000 K, with �
=1 kcal/mol. We found a few features in BP that have more
advantages over other methods. First, despite the rather large
temperature range, the solid curves in Fig. 2 display a fairly
consistent general shape for the energy histograms. This is
because that in BP, apart from the very initial searching pe-
riod, the histogram difference, rather than the energy differ-
ence, dominates the selection rule most of the time for mov-
ing uphill. This can be contrasted with other MC based
simulation techniques where temperature is a vital parameter.
Secondly, BP extensively focuses the search on the low-

energy region but retains the ability of sweeping the high-
energy region to overcome the energy barriers. For compari-
son, a typical energy histogram of BH has a peak at a mean
energy determined by kBT �see the dashed curve in Fig. 2�,
which is known to be inefficient in the low-energy region. As

FIG. 1. �Color online� Com-
parison between the predicted
lowest energy structures of Met-
enkephalin, visualized by a back-
bone tube plot. Eisenmenger and
Hansmann �17� have determined
the structure shown in �a� using
the multicanonical method, while
we obtained the structure in �d�
with a lower-energy minimum us-
ing BP, both based on the same
version of ECEPP, E /3� �see
text�. In �b�, �c�, and �e� we show
the structures determined using
BP based on E /2�, E /2, and E /3,
the first two verifying the results
from Refs. �16,17�. The energies
�in kcal/mol� associated with the
structures are: �a� −10.85, �b�
−10.72, �c� −12.91, �d� −10.90,
and �e� −12.43.

FIG. 2. �Color online� Histograms of energies searched by BP at
various temperatures �solid curves�, by BH at T=2 000 K �dashed�,
and by ELP on the reduced energy landscape at T=50 K �dot-
dashed�, within the first 2�104 MC steps, for Met-enkephalin,
based on E /3�.
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another comparison, we have also plotted the energy histo-
gram �dot-dashed curve in Fig. 2� from an ELP run based on
the reduced energy landscape; the transition probability P in
Eq. �5� was used for both cases, �a� and �b�, discussed above
Eq. �5�. The unconditional acceptance of case �a�, when a
lower energy is produced in comparison with that in the pre-
vious iteration step, is our key revision to ELP that encour-
ages the return to the low-energy region. Finally, a further
illustration of the BP search process is given in Fig. 3, where
we plot the visited energy at every MC step. We can see from
these trajectories that BP is able to frequently switch between
the search regions, in high and low energies, with almost no
dependence on the temperature parameter used.

To test BP in a larger system, we consider as our second
example villin headpiece subdomain HP-36 containing 587
representative atoms of the 36 residues capped by C and N
terminuses. Previously many attempts have been made to
study the folding of this peptide numerically �7,21,22�. Using
the parallel tempering method and the ECEPP/2 force field,
Lin et al. has determined an energy minimum of E
=−209.2 kcal/mol �22�. For comparison, based on a fully
stretched initial conformation, we have used BP to compute
the energy minimum based on the same force field. In our
simulations, we are able to locate a lower-energy minimum,
E=−209.65 kcal/mol, obtained in one of the 10 BP runs
consisting of 2�105 MC trials. Also yielding other low-
energy minima, the computation located a structure similar
to that determined by an NMR experiment �20�. Details on
the structure determination will be reported elsewhere.

To further illustrate the improvement in efficiency, BP
was applied to Lennard-Jones clusters containing N atoms.
The mean MC steps based on 10 independent BP runs to
locate the global minima are 10 851 for N=150, and 34 361
for N=155. In contrast, it takes about twice the MC steps to
locate the global minima for the same systems based on the
BH method �9�.

In summary, we have proposed a new Monte Carlo opti-
mization method based on the ideas behind basin hopping
�5,6� and energy landscape paving �7�. With a critical revi-
sion to the latter, our method has the ability of surpassing
high-energy barriers and searching the lower-energy region
in more detail. The success of the method can be shown by
its ability of finding new energy minima, lower than previous
results, of two of the best known examples in protein struc-
ture computation.
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FIG. 3. Typical BP search trajectories at �a� T=5 K and �b� T
=2 000 K.
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